Технология сварки MIG/MAG

Задать вопрос
Наши специалисты ответят на любой интересующий вопрос по услуге
Поделиться

Технология сварки MIG/MAG

Рис1-дуговая сварка.jpg

MIG/MAG - Metal Inert/Active Gas - дуговая сварка плавящимся металлическим электродом (проволокой) в инертном (MIG) или в активном (MAG) газе.

При сварке плавящимся электродом в защитном газе дуга горит между изделием и плавящимся электродом (сварочной проволокой), непрерывно поступающей в дугу и служащей одновременно присадочным материалом (рис. 1). Теплотой дуги расплавляются кромки свариваемого изделия и электродная (сварочная) проволока, образуя сварочную ванну. Дуга, металл сварочной ванны, плавящийся электрод и кристаллизующийся шов защищены от воздействия воздуха газом, подаваемым в зону сварки через сопло горелки. Расплавленный металл сварочной ванны, кристаллизуясь, образует сварной шов.

Рисунок1-дуг св.jpg

Рис. 1. Схема сварки плавящимся электродом в защитных газах

При сварке в защитных газах плавящимся электродом в качестве электродного металла применяют сварочную проволоку близкую по химическому составу к основному металлу.

В зависимости от сва­риваемого металла и его толщины в качестве защитных газов используют инертные, активные газы или их смеси. Выбор защитного газа определяется его инертностью к свариваемому металлу, либо активностью, способствующей рафинации металла сварочной ванны. Для сварки цветных металлов и сплавов на их основе применяют инертные одноатомные газы (аргон, гелий и их смеси). Для сварки меди и кобальта можно применить азот. Для сварки сталей различных классов применяют углекислый газ, но так как углекислый газ участвует в металлургических процессах, способствуя угару легирующих компонентов и компонентов - раскислителей (кремния, марганца), то сварочную проволоку следует выбирать с повышенным их содержанием. В ряде случаев целесообразно применять смесь инертных и активных газов, чтобы повысить устойчивость дуги, улучшить формирование шва, уменьшить разбрызгивание.

В силу физических особенностей стабильность дуги и ее технологические свойства выше при использова­нии постоянного тока обратной полярности. При использовании посто­янного тока прямой полярности количество расплавляемого электродно­го металла увеличивается на 25 - 30 %, но резко снижается стабиль­ность дуги, и повышаются потери металла на разбрызгивание. Примене­ние переменного тока невозможно из-за нестабильного горения дуги.

При сварке плавящимся электродом шов образуется за счет проплавления основного металла и расплавления дополнительного металла — электродной проволоки. Поэтому форма и размеры шва помимо прочего (скорости сварки, пространственного положения электрода и изделия и др.) зависят также от характера расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла определяется материалом электрода, составом защитного газа, плотностью сварочного тока и рядом других факторов.

При традиционном способе сварки можно выделить три основные формы расплавления электрода и переноса электродного металла в свароч­ную ванну: с периодическими короткими замыканиями, крупнокапельный без коротких замыканий, струйный (мелкокапельный без коротких замыканий) (рис. 2) [1].

Рисунок2-миг маг св.jpg

Рис. 2. Основные формы расплавления и переноса металла: а) с короткими замыканиями; б) крупнокапельный без коротких замыканий; в) струйный.

Процесс сварки с периодическими короткими замыканиями характерен для сварки электродными проволоками диаметром 0,5 - 1,6 мм при короткой дуге с напряжением 15 - 22 В. После очередного коротко­го замыкания (1 и 2 на рис. 2, а) силой поверхностного натяжения рас­плавленный металл на торце электрода стягивается в каплю. В результате длина и напряжение дуги становятся максимальными. Во все стадии процесса скорость подачи электродной проволоки по­стоянна, а скорость ее плавления изменяется и в периоды 3 и 4 меньше скорости подачи. Поэтому торец электрода с каплей приближается к сва­рочной ванне (длина дуги и ее напряжение уменьшаются) до короткого замыкания (5). При коротком замыкании резко возрастает сварочный ток и как результат этого увеличивается сжимающее действие электромаг­нитных сил, совместное действие которых разрывает перемычку жидкого металла между электродом и изделием. Во время короткого замыкания капля расплавленного электродного металла переходит в сварочную ван­ну. Далее процесс повторяется.

Частота периодических замыканий дугового промежутка может из­меняться в пределах 90 - 450 в секунду. Для каждого диаметра элек­тродной проволоки в зависимости от материала, защитного газа и т.д. существует диапазон сварочных токов, в котором возможен процесс сварки с короткими замыканиями. При оптимальных параметрах процес­са сварка возможна в различных пространственных положениях, а потери электродного металла на разбрызгивание не превышают 7 %.

Сварка без коротких замыканий с крупнокапельным переносом. Увеличение плотности сварочного тока и длины (напряжения) дуги ведет к изменению характера расплавления и переноса электродного ме­талла, перехода от сварки короткой дугой с короткими замыканиями к процессу с редкими короткими замыканиями или без них. В сварочную ванну электродный металл переносится нерегулярно, отдельными круп­ными каплями различного размера (рис. 2, б), хорошо заметными не­вооруженным глазом.

При этом ухудшаются технологические свойства дуги, затрудняется сварка в потолочном положении, а потери электрод­ного металла на угар и разбрызгивание возрастают до 15 %.

Сварка без коротких замыканий с мелкокапельным переносом. При достаточно высоких плотностях постоянного по величине (без импульсов или с импульсами) сварочного тока обратной полярности и при горении дуги в инертных газах может наблюдаться очень мелкокапельный перенос электродного металла. Название "струйный" он получил потому, что при его наблюдении невооруженным глазом создается впечатление, что расплавленный металл стекает в сварочную ванну с торца электрода непре­рывной струей (рис. 2, в). Изменение характера переноса электродно­го металла с капельного на струйный происходит при увеличении свароч­ного тока до "критического" для данного диаметра электрода.

Значение критического тока уменьшается при активировании элек­трода (нанесении на его поверхность тем или иным способом некоторых легкоионизирующих веществ), увеличении вылета электрода. Изменение состава защитного газа также влияет на значение критического тока. На­пример, добавка в аргон до 5 % кислорода снижает значение критическо­го тока. При сварке в углекислом газе без применения специальных мер получить струйный перенос электродного металла невозможно. Он не получен и при использовании тока прямой полярности.

При переходе к струйному переносу поток газов и металла от элек­трода в сторону сварочной ванны резко интенсифицируется благодаря сжимающему действию электромагнитных сил. В результате под дугой уменьшается прослойка жидкого металла, в сварочной ванне появляется местное углубление. Повышается теплопередача к основному металлу, и шов приобретает специфическую форму с повышенной глубиной проплавления по его оси. При струйном переносе дуга очень стабильна - колебаний сварочного тока и напряжений не наблюдается. Сварка воз­можна во всех пространственных положениях.

Для улучшения технологических свойств дуги применяют периоди­ческое изменение ее мгновенной мощности - импульсно-дуговая сварка (рис. 3) [2]. Теплота, выделяемая основной дугой, недостаточна для плавления электродной проволоки со скоростью, равной скорости ее подачи.

Рисунок3-миг маг св.jpg

Рис. 3. Изменение тока и напряжения дуги при импульсно-дуговой сварке: Iп, Uп - ток и напряжение основной дуги; Iи, Uи - ток и напряжение дуги во время импульса; tп, tп - длительность паузы и импульса


Вследствие этого длина дугового промежутка уменьшается. Под дейст­вием импульса тока происходит ускоренное расплавление электрода, обеспечивающее формирование капли на его конце. Резкое увеличение электродинамических сил сужает шейку капли и сбрасывает ее в направ­лении сварочной ванны в любом пространственном положении.

Можно использовать одиночные импульсы (рис. 3) или груп­пу импульсов с одинаковыми или различными параметрами. В последнем случае первый или первые импульсы ускоряют расплавление электрода, а последующие сбрасывают каплю электродного металла в сварочную ванну. Устойчивость процесса зависит от соотношения основных пара­метров (величины и длительности импульсов и пауз). Соответствующим подбором тока основной дуги и импульса можно повысить скорость рас­плавления электродной проволоки, изменить форму и размеры шва, а также уменьшить нижний предел сварочного тока, обеспечивающий ус­тойчивое горение дуги.

Современный аппарат для механизированной сварки в защитных газах (полуавтомат) состоит из источника питания сварочной дуги, объединенного с блоком управления, механизма подачи проволоки, сварочной горелки и дистанционного пульта управления, если необходимо дистанционное регулирование параметров режима сварки.

В качестве источников питания используются источники постоянного тока с жесткой или пологопадающей внешней статической характеристикой: сварочные выпрямители, инверторные источники, импульсные и специальные установки.

Современные цифровые инверторные сварочные источники питания с высокоскоростными процессорами благодаря специализированным алгоритмам управления переносом электродного металла при сварке в защитных газах обеспечивают высокую производительность, стабильное качество получаемых сварных швов и «простоту техники сварки».

Примеры современных сварочных аппаратов для MIG/MAG-сварки

Механизм подачи предназначен для стабильной подачи проволоки и регулирования ее скорости при выборе режима сварки. Для увеличения зоны обслуживания применяют промежуточные механизмы подачи проволоки. Работа этих механизмов синхронизирована с работой основного механизма подачи и обеспечивает возможность сварки на значительном удалении от источника питания, полуавтомата, газового оборудования [3].

Горелка для сварки плавящимся электродом в защитном газе (рис. 4) предназначена для направления в зону дуги электродной проволоки, подвода к ней сварочного тока, подачи защитного газа, управления процессом сварки.

Конструктивно горелки подразделяют на три группы:

- для механизмов подачи толкающего типа; только направляют проволоку в зону сварки (рис. 4);

- с встроенным в рукоятку механизмом подачи проволоки; подают проволоку механизмом тянущего типа;

- с комбинированным механизмом подачи толкающее-тянущего типа (система Push-Pull).

Рис5-миг маг.JPG


Рис. 4. Составные части горелки для сварки плавящимся электродом в защитном газе

Достоинства способа:

- Повышенная производительность (по сравнению с дуговой сваркой покрытыми электродами);

- Отсутствуют потери на огарки, устранены затраты времени на смену электродов;

- Надёжная защита зоны сварки;

- Минимальная чувствительность к образованию оксидов;

- Отсутствие шлаковой корки;

- Возможность сварки во всех пространственных положениях;

- Возможность полной автоматизации и механизации процесса.

Недостатки способа:

- Большие потери электродного металла на угар и разбрызгивание, особенно при сварке в углекислом газе;

- Мощное излучение дуги;

- Ограничение по сварочному току;

- Сварка возможна только на постоянном токе.

Области применения:

Сварка тонколистового металла и металла средних толщин (до 20 мм);

Возможность сварки сталей всех классов, цветных металлов и сплавов, разнородных металлов.

Список литературы

1. Гладков Э.А. Управление процессами и оборудованием при сварке: учебное пособие для студентов высших учебных заведений. М.: Издательский центр «Академия», 2006. 432 с.

2. Потапьевский А.Г. Сварка в защитных газах плавящимся электродом. М.: Машиностроение, 1974. 240 с.

3. Юхин Н.А. Механизированная дуговая сварка плавящимся электродом в защитных газах (MIG/MAG). М.: Изд-во «Соуэло», 2008. 73 с.


Галерея

Заказать услугу
Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Товары